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FOREWORD
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"Metallic Materials," Task No. 73521, "Behavior of Metals."
The work was admlinistered under the direction of the Metals
and Ceramics Laboratory, Directorate of Materials and
Processes, Deputy for Technology, Aeronautical Systems
Division, with Mr. D. M. Forney, Jr. acting as project
engineer.

This report covers work conducted from June 1960 to
June 1961.

The manuscript was typed by Mrs. Gerald Webers.
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ABSTRACT

A technique is presented for the constructions of stress-
strain relations based on exgerimental, cyclic, damping data.
The extension of this technique tc the biaxial stress case is
then shown followed by an example application involving flexural
vibrations of a cantilever.

PUBLICATION REVIEW
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I. INTRODUCTION

The purpose of this paper is to develop and demonstrate a
simple mathematical formulation of one and two dimensional, damped
stress-strain relations based on a special reduction of experi-
mental data. The motivation for thie work, which might be consid-
ered as an intermediate approach, stems from the marked complexity
and large number (at least a dozen) of separate physical phenomena
which have been discovered as being integrant to material damp-
ing.(1)* The implication is that a rigorous approach, which per-
force must reflect such involvement, could only be speculative
with the present limited experimental data. In spite of the
physical complexity of material damping, however, certain system-
atizations of the experimental data have been achieved, and it is
for such a development that the present paper constructs a mathe-
matical theory.

The simplest mathematical formulation for energy dissipation
which can be used to describe structural damping is that which
corresponds to the linear dashpot. 1Its plot on stress-strain
coordinates, for sinusoidal straining action, produces smooth
contoured hysteresis loops as shown in Figure la. If this formu-
lation is modified by dividing the damping coefficient by the
frequency (implying restriction of attention to discrete fre-
quencies¥, then this removes the linear frequency dependence of
the energy dissipation per cycle. This is usually termed '"hys-
teretic damping,” and is one of the most prominant characteristics
of material damping. Thus for the uniaxial case, the stress-
strain relation for hysteretic damping becomes

— C .
T =Fket e (1-1)

where o and € are respectively, the stress and strain, E is
Young's modulus, C is the damping coefficient, w is the fre-
quency of the sinusoidal straining action and ¢ is the strain
rate.

Although it turns out that the foregoing formulation, which
produces elliptical hysteresis loops, can produce excellent re-
sults in most vibration analysis problems, the experimentally
obtained loops for metals have sharp corners at both ends, and

*Number in parentheses refer to a bibliography oun page 2en

Manuscript released for publication 15 August 1901 as an
ASD Technical Report.




furthermore, are practically linear in the central, or low stress-
strain region. This suggests that the next stage of complexity

in the analytical development might be an attempt at a direct,
geometric description of the hysteresis loops incorporating the
aforementioned characteristics. This has been done in various
ways. A formulation, due to Davidenkov (2), which brings in the
characteristic sharp cornmers as shown in Figure 1b, and which

also incorporates certain dependence upon strain amplitude, is
represented by the following equations:

?=E{6—L[(eo+e)m—2m-|e:‘]}

m
?=E{e+%[(e°—€)m—2m—le?]} (1-2)

The two equations, one each for the upper and lower curves of the
hysteresis loop, are now a necessary complication. The constants

K and m are left to be evaluated experimentally for the
material under consideration, and €, 1is the strain amplitude.
This particular description of material damping has been applied
to a number of problems by Pisarenko (3). The associated mathe-
matical problem, of course, is nonlinear, but his results show
that a first approximation only, derived by the use of asymptotic
expansions, gives a fairly accurate result.

Another example of the foregoing technique of geometric
description of hysteresis loops is that developed by Rang (4).
In this case a cubic polynomial is used to describe each of the
two sides of the loop, which produces sharp cormers, with the
constants being determined by assigning values to certain charac-
teristic tangents of the loop and the locus of the corner points.
Both of the foregoing formulations allow close approximation of
experimentally observed physical phenomena, but at the expense of
making subsequent mathematical analysis quite difficult. For the
Rang case, an example solution is given only for a discrete, one
degree of freedom, spring-mass model. Furthermore, both of the
foregoing analyses are developed strictly for the uniaxial stress
case and no attempt appears to have been made at incorporating
them, in any systematic way, with the biaxial stress case or with
other phenomena such as hereditary effects, etc. All descriptions,

however, can be modified to include various types of dependence
on strain amplitude.

Thus, at present, there is not only the penalty of mathemat-
ical complication in employing relatively precise descriptions of
the hysteresis loop, but the added disadvantage that no suitable
collection of data is available for a wide variety of materials.




In fact, the only general technique which has been shown up to
now, for systematizing such data, uses the area of the hysteresis
loop, plus certain fatigue properties, with no reference to loop
shape., In other words, it does not contain information with re-
spect to instantaneous rates of energy dissipation, which would
therefore have to be added in some way if the more precise de-
scriptions were to be applied. Besides this problem of expanding
the collected data, there occurs the still additional problem of
interpreting equivalent damping conditions under uniaxial and
biaxial stress conditions. The precise phenomena involved in this
connection are not fully understood at the present time. The only
relevant theorg for associating data obtained using uniaxial
stress to the biaxial stress case is that due to Robertson and
Yorgiadis (5), who define equivalent states (of material damping)
as those which produce the same distortion energy, and that due

to Mentel (6), who suggests that in such cases as plate vibration,
some fractional part of the dilatational strain energy ought to

be included in the foregoing equivalence. The latter formulation
can be expressed analytically

2 2
o, = ,\/3rm+Acrd (1-3)

where o, is the maximum (normal) stress in the uniaxial case
and 1, and oy are the maximum shear and the '"mean normal" or
dilatational components of stress in the equivalent biaxial case.
The development of this equation is worth special notice. Con-
sider the two states of stress as shown in Figure 2. If we
observe that the principal stresses in the biaxial stress state
can be designated by

o = o +r

' d m
o = o —T

2 d m

then the expressions for the distortional and dilatational strain
energies take on the following form:

for the uniaxial stress state,

| + v
v distortion - 3E n




U v | = 2v 0'2
dilatation 6E

for the biaxial stress state,

|+ v 2 2
= +
Udistortion 3E (37 + oy )
U - =2 2 o 2
dilotation 3E d
Thus, if we choose to ignore the mean normal stress O , say
by setting o, = 0, and then equate the distortional “strain

energies in the two cases, we obtain

-_— o = T
3E n E m
or (1-4)
2
o = 3rm

which is the Robertson-Yorgiadis criterion. On the other hand,
if we retain all quantities and equate the total strain energies
in the two cases, we find the equivalent expression to be

e 2 _ 2
crn—\/2(|+z/)rm+2(l z/)crd (1-5)

If we now set v = 1/3, then (1-5) becomes

w f gty 2 1-6
O'n\/3rm+3oa (1-6)




Alternatively, if regard the damping phenomenon as being associated
primﬁriiy with a "plastic type' straining process wherein v = %,
we obtaln

= By =%
O‘n .\/ 3rm o'd 1-7)

The coefficient of T; , as given by (1-6) and (1-7), is thus
observed to be at most only moderately altered from its value in
(1-4). Hence, in order to allow for a variable damping influence
between distortional and dilatational straining, the form given
by (1-3) is suggested as a simple, one parameter description for
empirical reduction of experimental data. Although the uniaxial
to biaxial damping equivalence given by (1-3) carries the imgli-
cation that the shear stress criterion, as expressed by (1-4),
gives the lower bound for material damping, it should Ke observed
that no argument is given to exclude negative values of A which
means, for example, that a nullifying type of interaction could
be described. Note that the first stress invariant Ij, for the
biaxial case, is given by

I|=Z°'ij=2°'d

so that (1-3) can be rewritten

— 2 g 2
o = 3cF + L1 -8

This reduction can be carried one step further by introducing
the second stress invariant

I, = o

which gives

~
N
[
-
-nN
|
-
»

so that (1-8) can be further modified to

o =/ T (3+MI2 - 31, (1-9)




It is observed, however, that I3 introduces no new functional
forms beyond those contained in él-Sg, so that a simple, one
parameter description, based on (1-8), is

2 x T2
o, = 3TE * A*I,

which is the expression used in this paper. A two parameter
description, based on (1-9), would be

(1-10)

o =,/ AIF+ A

This latter formulation might be the most promising for the tri-
axial stress case but this problem is left for future studies.

(1-11)

In view of the foregoing unclear situation concerning mate-
rial damping under biaxial stress, it was concluded that a useful
interim step for theoretical response work, would be to construct
a mathematical theory which was counterpart only to the degree of
systematization thus far shown for experimental data. This implies
neglect of loop shape, so that the simplest mathematical shape,
viz., the ellipse, might as well be taken. The chief effect of
this simplification, whose primary geometric characteristic is the
elimination of the sharp corners at the loop tips, might be ex-
pected to be significant only at the highest modes and frequencies
of vibration. No such effect, however, is demonstrated since the
analysis is carried out only for vibrations in the neighborhood of
the fundamental resonance. In this case, when the loops corre-
spond to structural metals at stress amplitudes below yield, the
area only and not the loop shape appears to be significant [3].
Further discussion of this question is included in subsequent
sections of this paper.

The cne parameter equivalence relation between uniaxial and
biaxial stress states, as expressed by (1-10) and the experimental
uniaxial damping data are then used as a basis for generating the
stress strain relations for the tiaxial case. These relations
permit the formulation of the vibration response problem for
plates exhibiting material damping. Example solutions for the case
of a circular plate are given in (7].




II. ANALYTICAL FORMULATION OF MATERIAL DAMPING

2.1 General Problem

It was observed in the foregoing section, that at least a
dozen individual phenomena (e.g., magnetostriction, intercrystal
thermal currents, interstitial solute atoms, etc.) have been
identified as being significant in the production of material
damping. Any widely applicable reduction of damging data can
therefore be expected to be either extremely elaborate, which
singles out the aforementioned phenomena and their associated
parameters, or extremely simple, which suppresses them, At the
present time, only the latter approach has led to significant
success based on a broad assimilation of data. This development
has been due to Lazan who has shown, empirically, that the
fatigue strength of material can be used as an important parameter
in the reduction of experimental damping data (see Figure 2.10
of Ref. (8)). This parameter is the ratio of the cyclic stress
So (in mathematical notation, the stress amplitude o, ) to the
fatigue strength Sg, corresponding to 2 x 107 cycles, both quan-
tities corresponding to uniaxial, sinusoidal, constant amplitude
and fixed frequency conditions. The experimental results show,
that for the given selection of structural materials, the energy
dissipation is essentially independent of both the frequency of
cycling and the stress history when the stress amplitude is kept
below a certain critical value. This observation confirms the
common notion of hysteretic damping, which serves adequately in
many simplified analysis of vibration response.

The aforementioned critical value of stress amplitude is
called the cyclic stress sensitivity limit S_. Both the fre-
quency of cycling and stress history develop marked influence for
cyclic stressing above this stress limit. An empirical determi-
nation of this critical value, due to Lazan ;1), is 80 percent of
the fatigue strength corresponding to 2 x 10/ cycles. Fortunately,
from the analytical point of view, this value is relatively high
compared to stress levels nominally encountered in structures
subjected to long term dynamic loading.

The conclusion derived from the foregoing sections is that
at stress amplitudes below the cyclic stress sensitivity limit,
the cyclic material damping is adequately expressed merely as a
function of the strer:; amplitude S,. Such a description has been
found by Lazan (8) tc be

a
Do = T S (2.1-1)




where J and o are adjusted for the given material, and D, is the
cyclic energy dissipation per unit volume. The range of VYalues
taken by the parameters J and @ 1is relatively small (no changes
of order of magnitude) for a large selection of structural mate-

rials. The total cyclic energy dissipation Oy» in a given volume
of material is then given by

D, = D, dV .
v = Juotme © 2.1-2

For reasons which will be apparent later, the alternative expres-
sion

o= n
D, = 2 7n S (2.1-3)

where n is restricted to being an integer, will be introduced as
a replacement of (2.1-1).

2.2 Uniaxial Stress

We have already introduced the stress strain relations of
Davidenkov as equations (1-2) in section 1. If these equations
are integrated over a complete cycle in order to obtain the net

loop area, and hence the cyclic energy dissipation D4, we find
that

+ € - €, oM+l (7= 1), ZE
- = - _ me1
Do—j:eocr de +j:€°o- de = T mt) o .(2.2-1)
We now note that
m-1
SoEcr°=Eeo{I--::—(2€o) },

so that if we assume small strains (and small nonlinearity) in
the sense that

m-1
-:n"— (2€g) << |
we can rewrite equation (2.2-1) in the form

2M' (m=1)p me
mim+1)gM 0 . (2.2-2)

Bew -




Eguation (2.2-2) is now in the same form as the empirical expres-
sion (2.1-1) and we obtain an identity if we choose

m= a—|
@(a—1)gr™"
2% (9—2)

and LESES

(2.2-3)

The fact of being able to demonstrate the foregoing equivalence
lends additional validity both to the experimentally derived
equation (2.1-1) and the Davidenkov equations (1-2). However,
the usefulness of the Davidenkov equations is limited by the
complication of having to keep track of the proper branch of the
hysteresis loop for different material points in addition to
having mathematical nonlinearity. Furthermore, the value of «
in (2.1-1) lies between 2 and 3 for most structural metals with
the value being nearer 2 for most steels (8 )( @ = 2 for 1020
steel, @ = 2.3 for Sandvik steel Q-T). This corresponds to
m= 1 in (1-2), for which value these equations collapse to

o =E(l—punde

which describes simply the undamped elastic case. Thus, for
integral values of @ , equations (1-2) are useful only for the
extreme case of @ = 3 if material damping is to be included.

The approach to the development of damped stress-strain rela-
tions: proposed in this paper, is to use strain rate as the
device to introduce elliptical hysteresis loops (in the manner of
complex damping [9, 10] ). The advantage of this approach is that
it allows direct and simple usage of the full hysteresis loop.

The stress-strain relation can thus be written in the form

0'=E(e+C,e’B+C2é) (2.2-4)

where C; and B account for elastic nonlinearity and C9 accounts
for the damping. The available experimental data, however, deals
primarily with structural metals, where, in the range of stress
levels at which (2.1-1) is applicable, the elastic component is
strictly linear. Hence, in place of (2.2-4), we are able to use
the simpler relation

o =E(e+ Cé) (2.2-5)




where the damping coefficient C 1is expected to be a function of
the strain amplitude, frequency and the elastic constants.

Integrating (2.2-5) for the cyclic damping, we obtain

DL = (EC éde .
0 nycIe (2.2-6)

If the straining action is now assumed to have the sinusoidal
variation

e=e°coswst (eozo)
the stress strain relation gives

o = Eeol coswgt — Cuwgsinwgt ) |

so that

|
2 2 >
2y = Eeo(l+Cws)2 (2.2-7)
the energy dissipation, as expressed by (2.2-6), then becomes

2m

w
D, = ECJ] ° é%dt = 2
° fo ) TEC W S (2.2-8)

substitution of (2.2-7) into (2.2-1) gives

n]-

| a _a 2 2
DO = JE €° ('+C(Us) (2.2_9)

which can be compared with (2.2-8). Requiring the equivalence of
(2.2-8) with (2.2-9) thus gives

Q
eg'a(l o+ Czué e (2.2-10)

TCw, = TE

Equation (2.2-10) identifies the functional dependence required of
the damping parameter ¢ . This expression can be simplified if
we, observe that, for most structural applications, we can expect

Caug << | . The resulting expression for C 1is

10




C = = €
T wg (2.2-11)

Recalling that for structural metals a usually has some non-
integral value between 2 and 3, the alternative expression (2.1-3)
can be employed to retain the simplicity of being able to stay
with integers. In particular, we can take

= J, 85 + T, Sg
DO 2 (o] 4 T0 (2.2_12)

which provides an excellent approximation of (2.1-1) for any «
in the aforementioned range. The reason for stepping up to the
fourth power in (2.2-12) is to obviate any necessity of having
to keep track of the sign of S, in subsequent applications.

The corresponding expression for the damping coefficient C is

E 2 2
C (3, + E°T, ¢, )
Twe 2 L0 (2.2-13)
where again the condition c®w?< < has been applied. Note that,
for the case of @ = 2 in the ‘prior formulation (2.2-11), we

obtain

&

= 3

(2.2-14)
which is the first term of (2.2-13).

We thus conclude, that for the one dimensional case, a modi-
fied stress strain relation based on an elliptical hysteresis
loop, can be readily constructed such that the resulting energy !
dissipation is the same as that given by the empirical relation
(2.1-1), or its substitute, (2.2-12). This construction is con-
siderably simplified by the restriction C? w? << |, which, in
physical terms, is equivalent to saying that the stress amplitude

is determined substantially by the elastic component (of strain)
only.

2.3 Biaxial Stress

The method of extending the stress-strain relation (2.2-5)
to the biaxial case is not obvious. The reasons behind this were
noted in the introduction. The most general uniaxial to biaxial
stress state equivalence presently anticipated, as expressed by

11



(1-3), is therefore chosen for analysis. Using (1-3) and (2.1-1),
the cyclic damping for biaxial stress becomes

D= J(3z% + A I° o (2.3-1)
while using (1-3) and (2.2-11), we obtain
n
D°=§J'n(3rz+A*I|2)2 _

The criterion that the stress amplitudes remain sufficientlﬁ
small so that no effects of frequency or stress history might
enter is now interpreted as

(2.3-3)

Either of the formulations (2.3-1) or (2.3-2) enable us to
generalize the stress-strain relation (2.2-5) to the biaxial
stress case. Suppose we have a plane stress problem. Consider
the following construction for the stress-strain relations
written in principal coordinates

_ _E * (- * -
o, = l__uz(E)(-i—wsy)'l'E (e, +v™e

y)’

E x g - o
= +
o (e Vex)+E (ey+u ex),

y | —v y (2.3-4)

The motivation behind the construction is clear: the first terms
of (2.3-4) are the usual relations of elasticity theory, and the
second terms are modeled on the first, with constants E*¥ and v *
providing the analogous extension of constant C in (2.2-5),.
Again, by introducing a harmonic straining action described by

x = €ox COS wgt

€y = €oy cos wgt
(2.3-5)
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we can integrate (2.3-4) for the cyclic energy dissipation. The
result is

L
i * We .2 * . . 2
D, = E fo (e +2v exey+ey)df
=1rE*ws(e;x +2v*eoxeoy +€(z:y)

(2.3-6)

which expresses the energy dissipation in terms of the ampli-
tudes of the principal strains.

We proceed next to construct the alternative expression for
D by solving for the equivalent normal (or uniaxial) stress
and substituting this into the empirically based expression
(2.3-1). Thus the stress-strain relations may be written

£ X * .
Ty =Tt (eox tvegy Jeoswgt + EM we (€5, +v™ €5 )sinwgt,
g =—E—(e +ve )coswt +EXw (e +v¥ e )sinw_ t
y |—»2 oy ox s s oy ox s

By subtracting and adding the two foregoing equations, we obtain

E * * .
=90 F = + - -
o, A e (on €oy )coswsf E ws(l v )(on eoy)sm wsf’
o to = £ (e +e )eoswt + EX w (1+1X) e +e )sinw t
X y | —v ox oy ( S ox oy S 9

from which we can identify the maximum shear stress and dilata-
tional components to be

T~X = T{(va )2+(E*ws)z(l—v*)z}(eox—eoy)z,

If {( 2 )2+(E*ws)2(|+v*)!}(eox+eo)

l—v y
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Substituting these results into (2.3-1) finally gives

J'{ [ +(E*w)z(l—v*)zJ(¢ox oy jE
o

+ 85 [ (E=) +E*0? 4 0%0 [ (et ey, 17}

© (2.3-7)

The prior expression, given by (2.3-6) is now compared with
(2.3-7), from which we obtain the condition that

J'{%[(T}_E—y—)z +(E*ws)2(l—v*)2](eox—-eoy )2
+A*[(—E—)2 Xt (14 0%)% | (eg, + €, 12 =

= WE*ws( egx+ 2 v¥ €,y €oy +egy V. 25

A difficulty which now arises is that the foregoing expres-
sion (2.3-8) is the only condition which emerges from this develop-
ment, whereas there are now two, as yet unspecified damping
parameters E* and v ¥, in addition to the special parameter

A *. Equation (2.3-8) therefore merely provides a constraint
between the three quantities E#*, v*¥ and A*. In spite
of this indeterminacy, several useful, specific formulations are

possible provided we accept certain restrictive assumptions.

Let us consider the special case where « = 2, Equation
(2.3-8) is then satisfied if we choose

erug =T { K[ (+E5 ) +Er e+ 3 [ (5 T+ er fo-vn2] } |

7rE*wsu* =J { A* [(_I_E-; )2+(E*ws)2(l+v*)2]'%[( |-Ev )2+(E*ws)2(l—'v*)2]}

If we now apply the restriction that

E*ws(|+v)(|'—v*)
E

e (2.3-9)
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and E*ws(P“v)U+u*)
E
the foregoing equations simplify to the following:

<< |

*
JE? A 3
* _ + },

E TWw (1—v)? 4(14y)? (2.3-10)

. AANU+Y)E=301—y)?
V —1
4N +v)2+ 3(1—v)?

It is tempting, at this stage, to investigate the condition
v = v *, which is strongly suggested by the way in which the ori-
ginal equations (2.3-4) were formulated. This condition gives

3J€e?
2w (1+v)(1—v?) (2.3-11)

EX =

* S (=)
= 4 (1+v)

where the expression for A * is particularly interesting if we
recall equations (1-7) and (1-10). This indicated value of A *
is 1/4 for the limiting case of Poisson's ratio of 1/2, which
checks with the aforementioned equations, in particular, with the
conditions set down for (1-7). On the other hand, for Poisson's
ratio equal to 1/4, the indicated value of A * is 3/8, which,
although an interesting result, must be treated as merely the con-
sequence of an expedient postulate.

An interesting result may also be obtained for the more
general case where 2 < @ < 3, which includes the entire range of
experimental values applicable to structural metals at low stress
levels. In this case, in order to avoid dealing with fractional
values of @ , we turn to the expression given by (2.2-12). This
two-term approximation gives

_ 2
b, = J,Q *+ J,Q (2.3-12)

where

Q= {%[( IEu )z+(E*ws)z(l—v*)z](tox—eoy )2

s A% (5 ) + (€% wg) 201+ 5%)? ] Cegy + ey )® }

5




Equating (2.3-6) with (2.3-12), and applying the restrictions
given by (2.3-9), we obtain

2
{2 (T55) ety FHA(E) (g + 217}

2 2
{ T, t T [%( |§-y )(‘ox—‘oy)z+A*( |Ev) (‘ox""oy)z]}

2 +2v%¢ € +e2 )

e *
= TE wg (€ ox oy oy

(2.3-13)
Equation (2.3-13) is satisfied, if, in particular, we choose

* _ _E * * (o2 * 2 }
EX = ﬂws{Jz+‘T4(‘ox +2v¥e,, ‘oy+eoy) ,

ke AA U+ )2 - 31— )2

GAF(1+v )2+ 31—y )? (2.3-14)
where A* .
*_ +
Iz EJ, { (1—9)?2 4(1+y)? }
-
* _ J.
IS =EJ, { —J:—

Once again, if we look at the special case where v = y *, we
find

E

2
* _ 3E {3, + 3% E
2

( 2 + + 2
2uwgll=v)1+v)* fox T1e¥EG i )}

2(1—u)(14+y)2  OX ox "oy -~ “oy

*_ 3li-v)
4 (1+v)
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It should be noted that the strain amplitudes €,, and €,
are not necessarily positive quantities, although the sign of Jge
determines the sign of the other on account of (2.3-5). However,
(2.3-6), which gives the dissipation, is quadratic in the strains,
so that the sign is unimportant in this case,

III. VIBRATING BEAM EXAMPLE

3.1 General Considerations

We consider the specific problem of a cantilever beam of con-
stant cross section which is excited in its fundamental flexural
mode by a forced periodic rotation of its support. This ?roblem
has already been studied by Pisarenko who used Davidenkov's equa-
tions (1-2) to describe the beam material. An additional study of
this same problem, but using the stress-strain relations proposed
herein, is thus provided with an interesting comparison. For exam-
ple, it can be argued that the stress-strain relations developed
in the foregoing section have such complication that one might as
well drop any pretense of approximate formulations and work from
a much more general development. It is one of the objectives of
this section to throw more light on this question.

Pisarenko's analysis, which appears in Chapter Two of [2] ,
uses asymptotic expansions to generate successively higher ordered
approximations of the solution to the steady state problem. He
finds, however, that only the first order approximation is neces-
sary to produce acceptable accuracy. It is assumed that the same
situation holds true when the new stress-strain relations are used
in place of Davidenkov's. A comparison of results is then possible
using first order approximations only,

3.2 Equations of Motion

The basic geometry and coordinate system for describing the
vibrating, deformed beam is shown in Figure 3, with the following
notation:

x = horizontal coordinate axis coinciding with the
undeformed, unrotated centerline of the beam

y = total deflection of the centerline from the x-axis
due to rotation and deformation

8 = small angle of rotation of the clamped end of the
beam

y =y - 8 x, the deflection of the centerline due to
deformation from the rigidly rotated position.

17




This description is based on the concept of the elastic line whose
properties are derived for a rectangular cross section of width b
and height h as shown in Figure 4.

The appropriate stress-strain relation, as developed in
Section 2, would be based on equations (2.2-4), (2.2-12) and
(2.2-13) which give

E 5
o =c{e+ 5= (7F +E%27 2)¢
{ LL2 oo ¢ (3.2-1)

However, it is instructive to base the stress-strain relation more
directly on the Davidenkov description. Thus if we determine the

constants in (2.2-12) by using (2.2-3) where we arbitrarily choose
m = 2, the corresponding stress-strain relation becomes

6=E{e+34”*;seoé}.

(3.2-2)
Using the expression for infinitesimal strains (Figure 3)
0%y
€ =2 T
0 x
(3.2-1) and (3.2-2) become respectively
az E 63
G=Ez{ );+T,w (J'2+EZJ'4G§)—yz ,
ax S afax (3 2_3)
and
- a? a°
oc=Ez yz + il €y yz }
ax 31Tws af ax (3 2_4)

The bending moments, M and M for the two cases, at any cross sec-
tion are then given by

h
EJ, 0\ 0% _ 2bT.E* rz . 3%
= +—2 — +
w=er Twg ot 1 oy Tug j; o Graxr 2 T (3.2-5)
0%y 8ub % a%y
M=ETI =& £ f eo-—-Tzzdz,
0 x Twe Yo 0t Ox (3.2-6)

On neglecting the effects of shear deformation and rotatory inertia,
the equations of motion are

18




y =y + 8«
0’y  9*m
P d 12 + axz =0. (3.2"7)
Substituting (3.2-5) and (3.2-6) into (3.2-7) gives respectively

3%y 320 EJ, O 3%y
p + x 32 } +iE1 {I + 2

afz -".ws dt dx‘
h 3
2bT, E* 0° .7 d
: .‘,fzez—%zzdz=0,
T We 0x“ 90 % 9tdx (3.2-8)
2 2 4
, 0 Do, 0°6 £ o 11%% i

912 dx o x

h

8ub 0? > yy .
+ —— 2z dz=
wr @) dx° 'f; So dtdx? 202=0, (3.2-9)

as the general equations of motion for the elastic line. The cor-
responding boundary conditions are

dy
y = = at x =0,
0 x
dzy 33y
ot ax © oox=t (3.2-10)

The analyses of (3.2-8) and (3.2-9) are essentially parallel to each
other: the former (3.2-8) is the one suggested for general appli-
cation, while the latter (3.2-9) is for the specific purpose of mak-
ing a comparison with Pisarenko's solution. The subsequent analy-
sis is therefore restricted to (3.2-9) only.

We reformulate (3.2-9) and (3.2-10) by introducing the dimen-
sionless quantities x =1 » 2=hm , and y =Alu, where A 1is
an arbitrary, small parameter. Furthermore, on assuming that the
damping effect and the excitation, characterized in this case by
the change in the angle 8 , are both small, we denote

8 = N 8, cos wt ,

e (x,y) = Nes(L,u).
19




The equation of motion then becomes

% 8ubh® @2 + x 0 2
E1l + A\ & —————ump-gdn *
agQ 1rws agz j; 0o afagz n Y
4 azu 4
+pl at2=>\1« 6,8 coswt |
.(3.2-11)
with the boundary conditions
6]
u = acu = ot C =) .
9% _ a3y _ G ' |
L ard ot L=1. (3.2-12)

3.3 Method of Solution and Zeroth Approximation

The method of solution to be applied to the foregoing equa-
tions is similar to that proposed by Pisarenko. We assume that the
excitation frequency w , is in the neighborhood of one of the
linear natural frequencies; say the fundamental natural frequency

w, and introduce the dimensionless time
T = wt + ¢ |
where Y is an arbitrary constant. Using the new variable 7 ,

(3.2-11) can be rewritten

w ¢ 0% E1l 0%y w 2 # t x 0%
+ + —) — 2
( wO) aTz Pl4w§ a€4 X)’ ( ws) agz j; 60 aragz n d"]
w 2
. = XGO(—UJ—) Lcos(t — ), (3.3-1)
8ubh °
where y = ——7p—.

4
mpl
We now assume a solution in the form of the expansions

U=U°+>\U|+' .....

w2=wg(|+>\w°'+ ...... ) (332)
I SRNC o ), )




where

u = & ¢ (L) cos t. (3.3-3)

0

On substituting (3.3-2) into (3.3-1), we obtain the following
set of linear differential equations:

azu°+ EI d%,

=0 s -
dr®  p1*w? ot’ (3.3-4)
0% ET 0% 0%y
62.+ 1402 a:=9°§cos(r—\}l)—w°|—a—§ (3.3-5)
5 P W, g 62 ‘:’_ - Ta3u .
—YF Jo eo (Uo) a'r a 2 77 d ’
etc., where w = wg . The corresponding boundary conditions are
0 uj
B = =0 at £ =0,
og
azui d’ui 0 |
at:  ar® ot L=1. (3.3-6)

On substituting (3.3-3) into (3.3-4) and considering the
boundary conditions (3.3-6), a set of eigenfunctions

|
¢i ~ 2sin kj sinh k

: {(cos kj + cosh ; )(cosh k,-g — cos kjg ) +

|

+ ( sin kj — sinh k; )( sinh kjg — sin kjg )}
(3.3-7)

is generated; and the corresponding engenvalues kj are determined
by

cos kjcosh kj +1 =0
. 3 (3.3-8)
pl w
where k‘ = sy B
) EI
Hence, the zeroth approximation is
kKYEI
2
wy = —91—4— (3.3-9)
P
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$(L) = ¢ (L)

(303"10)
3.4 First Order Approximation
Recalling that o h 32,
RRFT
we have AhS
e(uy) = ) n ¢, cOS T
hd " (3.4-1)
e:(uo)=T7)¢~° for n >0

If (3.3-10) and (3.4-1) is now placed in (3.3-5), we obtain

azul+ | 9%, =8 Lcos(r—y)+
aTZ k4 ag“ (o]

(o]

2
)’h 4 m e :
meqSocosr 32 1 (kodooqso ¢° )sin T

(3.4-2)
which is the differential equation for the first approximation.
The corresponding response equation is obtained by multiplying
(3.4-2) by ¢ cosT

and ¢ sin r separately, and integrating each
result over the length of the beam for one cycle. This eliminates

the time dependence and, of course, the energies must balance over
the cycle., We thus obtain

fo' {gogcos\p +w°'8¢o} $ df =0

2

! . )’ h 8 4 " ||l2
8 L siny + ( k + ) gL =0
fo { oY Ty e Rk T Y }¢° . (3.4-3)
Carrying out the integrations and substituting for w, from

(3.3-2), finally leads to the response equation for the first order
approximation.

2 A 46, (cosky+ cosh ko) 1° hT12 %
(_“’_) = e g{[ kg s:::skoosinhcii i ]—[ );'L ]84}2 (3.4-4)
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where

t=f {eg 8}t

The first order approximation of the solution for the displace-
ment is now readily constructed by using the method of Fourier ex-
pPansion. We thus assume the solution

u, (v,0) = v, (C)cos ¢ + \pl*({.',) sin T (3.4-5)

which, on subsitution into (3.4-2), gives

"= k3w, =k { 8, b cosy +5“’on¢o}

ko 4 ok 9 yhsa " e
‘pl koqll = k(: {eog Sln‘l’ + 321 (k3¢°¢° i ¢° )}
(3.4-6)
On expanding
00) a -
V= 2 9 ¢ y*= 2 a'¢
we find
4 kgBycos Y p
E RO = J Nk
)
*is 4 k94 fl { e : + yh82 4 1" me
% = ki—kg o obsinyt oy kb ¢ + ¢ )}gt}dg,

3.5 Numerical Result and Comparison

The result obtained in the foregoing section is now applied to
the specific example studied by Pisarenko. The beam is made of
steel with the following given data: m= 2,, u= 18,6, b = 1,12 in.,
h = 0.59 in., 1 = 15.95 in., E = 2,96 x 10’ psi., and x26L=-|o'f

The plot of the response curve given by (3.4-5) is shown in
Figure 5; also shown in the same figure are the corresponding solu-
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tions up to the first and second order approximations by Pisarenko.
Obviously his second approximation blows up at the peak point of
the response curve where Y = 7/ 2 . This singularity can also
be noticed by studying equations 12.4 and 12,5 of
[3] , which indicate that 12.4 cannot be satisfied at Y= m/2
However, this singularity can be removed if we modify Pisarenko's
method by expanding the amplitude of the excitation instead of
the phase shift. This modification leaves the zeroth and the
first approximations unchanged. Therefore, although the second ap-
proximation (by Pisarenko) blows up at one point it does not imply
the invalidity of the first approximation. Also, the result far
away from the singularity, which falls closely on that given by
(3.4-4) might still be used.

Another reason for the difference in amplitude and shape of
the response curves between the two cases is the strain hardening
effect of the Davidenkov stress-strain relation. This is easily
seen by plotting the locus of the tips of the hysteresis loops as
shown in Figure 6. The cyclic stress sensitivity limits (S for
some typical structural metals are also indicated in the figure,
beyond which values both formulations are invalid because of stress
history effects. All of these points are noted to be below the
corresponding yield limits, which justifies the linear formulation
of the elastic component in (2.2-5&; otherwise, as stated in
Section 2, the typical cubic or some other term would have to be
included.

If the difference in the response (Figure 5) between the two
cases is mainly due to the method of solution and magnitude of non-
linear elastic components, then the use of the elliptical hysteresis
loop should yield a satisfactory result. At least, the result
should be as good as that given by Pisarenko's solution. This con-
jecture is enchanced by plotting the two corresponding hysteresis
loops, given by (1-2) and (3.2-2) respectively, as shown in Figure
7. The strain amplitude is taken at a value slightly below the
cyclic stress sensitivity limit of high strength steel. Neverthe-
less the geometric appearance of the two loops appears to be prac-
tically the same, except for the strain hardening effect.

IV. CONCLUSIONS

The analytical technique of describing material damping by el-
liptical hysteresis loops has been applied to experimental damping
data to produce damped, stress-strain relations. The objective of
this approach is to produce an easily tractable mathematical descrip-
tion of the stress-strain relation which at the same time adheres
closely to experimentally observed behavior. An extension of this
development to the biaxial stress case is also demonstrated, although
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certain special assumptions concerning the role of distortional
and dilatational strain energies are necessary in order to achieve
this. An example application to the flexural vibration of a

cantilever beam is shown to illustrate the aforementioned prop-
erties.
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